
Nexmon: Build Your OwnWi-Fi Testbeds
With Low-Level MAC and PHY-Access

Using Firmware Patches on O�-the-Shelf Mobile Devices
Ma�hias Schulz

Secure Mobile Networking Lab
TU Darmstadt, Germany
mschulz@seemoo.de

Daniel Wegemer
Secure Mobile Networking Lab

TU Darmstadt, Germany
dwegemer@seemoo.de

Ma�hias Hollick
Secure Mobile Networking Lab

TU Darmstadt, Germany
mhollick@seemoo.de

ABSTRACT
�e most widespread Wi-Fi enabled devices are smartphones. �ey
are mobile, close to people and available in large quantities, which
makes them perfect candidates for real-world wireless testbeds.
Unfortunately, most smartphones contain closed-source FullMAC
Wi-Fi chips that hinder the modi�cation of lower-layer Wi-Fi mech-
anisms and the implementation of new algorithms. To enable re-
searchers’ access to lower-layer frame processing and advanced
physical-layer functionalities on Broadcom Wi-Fi chips, we devel-
oped the Nexmon �rmware patching framework. It allows users
to create �rmware modi�cations for embedded ARM processors
using C code and to change the behavior of Broadcom’s real-time
processor using Assembly. Currently, our framework supports �ve
Broadcom chips available in smartphones and Raspberry Pis. Our
example patches enable monitor mode, frame injection, handling
of ioctls, ucode compression and �ashpatches. In a simple ping o�-
loading example, we demonstrate how handling pings in �rmware
reduces power consumption by up to 165mW and is nine times
faster than in the kernel on a Nexus 5. Using Nexmon, researchers
can unleash the full capabilities of o�-the-shelf Wi-Fi devices.

1 INTRODUCTION AND RELATEDWORK
�e wide-spread availability of wireless infrastructure is one of
the major factors that lead to the success of smartphones. �eir
mobility makes them a perfect candidate for mobile testbeds. Also,
the Internet of things (IoT) strongly relies on wireless communi-
cation for monitoring and control applications. As a small and
cheap Wi-Fi-enabled platform, the Raspberry Pi is a good candi-
date for experimentation in this domain. Both platforms seek for
low-energy consumption to enhance ba�ery life. Hence, they use
FullMACWi-Fi chips to handle Wi-Fi-related tasks in an embedded
processor that only wakes up the device’s main processor if frames
need handling by an application. Unfortunately, FullMAC chips
reduce the �exibility to modify Wi-Fi’s behavior in testbeds and
research applications. To circumvent this limitation, researchers
o�en employ so�ware-de�ned radios (SDRs) to access lower layers,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
WiNTECH’17, October 20, 2017, Snowbird, UT, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5147-8/17/10. . .$15.00
DOI: h�ps://doi.org/10.1145/3131473.3131476

which results in testbeds such as NITOS [10] or CRC [6]. Schulz
et al. connected WARP SDRs [1] to Android devices in [12] to gain
access to Wi-Fi’s physical layer to change parameters such as mod-
ulation schemes and transmit powers to enhance video streaming.
�ese modi�cations would also run on o�-the-shelf hardware, but
the blackbox nature of FullMAC chips forces researchers to either
move to oversized experimental platforms or limit themselves to
the capabilities of proprietary Wi-Fi �rmwares as done by Eriksson
et al. for their cross-layer optimizations in [3].

In this work, we introduce Nexmon [13], an open-source frame-
work to write �rmware patches in C instead of Assembly with a
special focus on modifying Broadcom FullMAC Wi-Fi �rmwares.
Using C as programming language allows rapid prototyping and
easy portation of existing algorithms to run on the Wi-Fi chip’s
embedded processor. By cleverly using linker scripts, we also man-
aged to call functions of the original �rmware similar to library
functions de�ned in a header �le. We further provide means to free
multiple kilobytes of space in the original �rmware to place new
functionalities. Our main contributions are:

• Presentation of how processing works in Broadcom Full-
MAC Wi-Fi chips.

• Design and development of the Nexmon �rmware patching
framework with instructions to implement new function-
alities.

• Evaluation of the general operation, energy consumption
and delay of a ping o�oading application.

Below, we �rst present the in-chip processing in Section 2, in-
troduce Nexmon in Section 3, explain how testbed developers can
achieve custom goals in Section 4 and then present our evaluation
results in Section 5 followed by a discussion and a conclusion in
Section 6 and Section 7.

2 IN-CHIP PROCESSING
As illustrated in Figure 1, all Broadcom Wi-Fi chips consist of an
interface to the host (such as the secure digital input output (SDIO)
interface or the peripheral component interconnect express (PCIE)
bus system), a physical layer to implement the digital baseband
signal processing, an analog front end to mix baseband signals up
to or down from the transmission frequency, as well as a D11 core
to handle real-time MAC functionalities. While So�MAC chips
handle non-time-critical functions in the Wi-Fi driver running on
the host system, FullMAC chips move these responsibilities to an
ARM processor embedded in the Wi-Fi chip. �is reduces energy
consumption, as the host’s processor only needs to wake up from a
sleep state to handle application tra�c. Management and control

Session: Innovative Experimentation Platforms and Methods WiNTECH17, October 20, 2017, Snowbird, UT, USA.

59

BCMDHD or
brcmfmac

Driver

ROM

ARM Processor

RAM
Firmware

Heap

TX Proc.

RX Proc.

D11 Registers
Object Memory Access
PHY Register Access
Special Purpose Regs.
Template RAM Access

DMA
DMA
DMA
DMA

DMA

Obj. Memory
Ucode Memory
Shared Memory
PSM Registers

Background TX FIFO

Best-Effort TX FIFO
Video TX FIFO
Voice TX FIFO

RX FIFO and

Transmit
Modification

Engine

Transmit
Engine

Receive
Engine

Programmable
State Machine

(PSM)

Template RAM

Timer

Special Purpose
Registers

Condition Regs.

Baseband Crypto
Engine

HOST

SDIO/PCIE
Interface

Operating
System

Kernel
Memory

DMA

EMBED. PROC.D11 CORE FOR REAL-TIME PROCESSINGRADIO FRONT-END

PHYSICAL
LAYER

OFDM

DSSS

PHY Registers

DAC ADC

Mixers + Amplifiers

Figure 1: For frame processing, each BroadcomWi-Fi chip contains a D11 core with a programmable state machine to handle
real-time tasks. FullMAC chips, additionally, have an embedded processor to convert between Ethernet frames on the host
side to Wi-Fi frames on the D11 core side and handle Wi-Fi related MAC layer operations.

frames are handled in the Wi-Fi chip. Using a direct memory access
(DMA) controller, the host only exchanges Ethernet frames with
the Wi-Fi chip. �e la�er is responsible for forwarding the frame’s
payload over the wireless interface using Wi-Fi headers and correct
physical layer se�ings to reach the destination node. A�er prepro-
cessing frames, the ARM �rmware places them in its DMA ring
bu�ers and triggers DMA transfers into FIFO bu�ers of the D11
core. �ere, a programmable state machine (PSM) takes over to
control specialized frame processing hardware such as the transmit
engine that is responsible for passing frames from the FIFOs to the
physical layer. Encryption is employed in the crypto engine and
frame headers are quickly rewri�en in the transmit modi�cation
engine. To control these processing steps, the PSM accesses spe-
cial purpose registers that in�uence the engines’ behaviors. Even
though, the ARM processor can also access these registers, it is
too slow to apply changes on a per frame basis. �e PSM, instead,
executes optimized code to quickly react to changing conditions.
�is could be a timer indicating the need for a retransmission due
to a missing acknowledgment. �e PSM also handles receptions.
To this end, it analyzes the received bytes in real-time and decides
if frames need to be dropped, forwarded to the ARM processor or if
they require an acknowledgment. �e la�er has strict timing con-
straints that the PSM can meet by scheduling a transmission from
the template random-access memory (RAM) a�er a de�ned time
a�er completing a frame reception. To program the PSM, we disas-
semble the so-called ucode, change it and reassemble it. In FullMAC
chips, the ARM processor’s �rmware stores a binary blob of the
ucode and loads it through object memory access into the D11 core
during initialization of the chip. �e ARM �rmware itself is split
in two parts, one persistently stored in read-only memory (ROM,
640 KiB on a BCM43391 [2]) and one loaded into RAM (768 KiB on
a BCM4339 [2]) by the BCMDHD (smartphone) or brcmfmac (Rasp-
berry Pi) Wi-Fi driver. Using Nexmon, we can extend the �rmware
loaded into RAM and thereby change the chip’s internal behavior as
explained in Sections 3 and 4. In the la�er, we further explain how
to patch the ROM using �ashpatches and how to rewrite ucode.
1Also called CYW4339 a�er a takeover of Broadcom’s wireless Internet of things
business by Cypress in April 2016.

3 INTRODUCING NEXMON
To create patches for embedded �rmwares, we created Nexmon. It
follows the philosophy of collecting all the information required
for patching a �rmware directly in the C �les that also contain the
patch code. To de�ne where functions and variables (in general
symbols) should be placed, we introduced a new at-a�ribute and
targetregion-pragma that we evaluate during compilation with
our plugin for the GNU compiler collection (GCC). �is approach
allows to reuse Nexmon for patching �rmwares of other systems
with GCC compiler support.

In Figure 2, we present the whole �rmware handling work�ow.
Every �rmware analysis starts by extracting both RAM and ROM
and analyzing them in IDA to extract address information (see
Section 3.4) that either ends up in our C patch �les to place symbols
or in the definitions.mk �le used to de�ne addresses for patch
placement and the location of binary blobs. To make space for
our own patch code, we implemented ucode compression based
on [8] to roughly half the size of the ucode stored in the ARM
�rmware. During chip initialization we decompress the ucode
directly into the D11 core’s ucode memory using an adaptation of
Andrew Church’s tiny in�ate library2 (see Section 3.2). Between
extraction and compression of the ucode, we can disassemble and
extend it, as done by Schulz et al. in [11] to create a reactive jammer
on smartphones. As the binary blob to initialize the template RAM
is stored a�er the ucode, we extract it and let the linker place it
directly a�er the compressed ucode. �e space freed by ucode
compression is used to store symbols that we do not explicitly place
by our at-a�ribute. Instead, we let the linker collect them in a
patch-region using our targetregion-pragma.

During compilation, our GCC plugin extracts placement informa-
tion and stores them into a nexmon.pre �le that Nexmon re-sorts
for prioritization resulting in a nexmon2.pre �le. �en, Nexmon
creates linker and make�les used to produce and embed patch bi-
naries into the original �rmware �le. To call original �rmware
functions, we insert their signatures with a dummy function stub
and placement information into the wrapper.c �le. �is �le is

2Original tin�ate.c �le: h�p://achurch.org/tin�ate.c

Session: Innovative Experimentation Platforms and Methods WiNTECH17, October 20, 2017, Snowbird, UT, USA.

60

http://achurch.org/tinflate.c

rom.clean.bin
ROM firmware dump
without flashpatches

fw_bcmdhd.orig.bin
original firmware file

fpext
rom.bin
ROM firmware dump
with flashpatches

complete_fw.bin
combined firmware for
analysis

merge IDA Pro
complete_fw.idb
disassembled firmware
as IDA database

ucode.bin
extracted
original ucode

ucodeext
or dd

templateram.bin
extracted
templateram

dd

flashpatches.c
extracted
flashpatches

fpext

ucode.asm
disassembled ucode

b43dasm

templateram.c
extracted templateram
for automatic placement

xxd

ucode.modified.asm
modified ucode

ucode.*.patch
contain code changes
without original code

modify

b43asm
ucode.new.bin
reassembled,
modified ucode

ucode_compressed.c
reassembled,
modified ucode

zlibflate and xxd
take original if modified missing

wrapper.c
placement information
and function stubs

structs.h
structures used
in firmware

extract addresses
and structures

src/*.c
patch
specific
C files

gcc gen/*.o
object files with compiled
functions and variables
and unresolved symbols

Nexmon gcc
plugin

nexmon.pre
extracted address
information

gawk
nexmon2.pre
prioritized and
sorted address
information

definitions.mk
firmware specific
addresses (e.g., for
patch placement)

included in
wrapper.h
function signatures to
call original firmware
functions from C code

gen/*.ld
linker files to place
symbols at previously
defined addresses

gen/*.mk
make files containing
instructions to extract
symbols from patch.elf
and insert into firmware

gawk

gawk

ld patch.elf
contains placed
and resolved
symbols

fw_bcmdhd.orig.bin
original firmware file

fw_bcmdhd.bin
patched firmware
binary

make

FIRMWARE ANALYSIS

UCODE MODIFICATION

BINARY BLOB EXTRACTION

UCODE COMPRESSION

INFORMATION
STORAGE

NEXMON PATCHING PROCESS

Figure 2: Illustration of the whole Nexmon work�ow. We start by analyzing the �rmware in IDA to extract address and struc-
ture information. Using this information, we extract binary blobs for replacement (templateram), modi�cation (�ashpatches)
and compression (ucode). We require the latter to attain space for �rmware patches. Before compression, we can modify
the ucode to change the chip’s real-time behavior. To modify the ARM �rmware, we write patches in C, link them against
�rmware functions and merge the result into a new �rmware.

compiled like any other C �le, but the resulting binary blobs are
not embedded into the patched �rmware. Nevertheless, the linker
knows where to �nd �rmware functions and is able to call them
from our patch code. To avoid rede�nitions of all function signa-
tures in a header �le, we use the wrapper.h �le that automatically
removes the function stubs and only keeps the signatures. Below,
we present how to handle Nexmon in general and in Section 4 we
explicitly focus on extending Broadcom �rmwares.

3.1 How to write patches?
To place functions or variables at arbitrary positions, we can prepend
their de�nitions by our at-a�ribute:
at(0x100, "", CHIP_VER_BCM4339, FW_VER_ALL)
It takes four parameters. �e �rst de�nes the target address (e.g.,

0x100), the second is a string that can be set to "flashpatch" or
"dummy". In wrapper.c, "dummy" is used to avoid placing function
stubs into the �rmware. "flashpatch" tells Nexmon to create a
�ashpatch that overwrites up to eight bytes in the ROM at the
speci�ed address (see Section 3.3). �e other two parameters of
the at-a�ribute allow to condition the use of this a�ribute to cer-
tain chip and �rmware versions (e.g., CHIP_VER_BCM4339 for the
BCM4339 and FW_VER_ALL used for symbols in ROM, whose ad-
dresses do not change according to the �rmware �les loaded into
RAM). By prepending multiple at-a�ributes with di�erent ver-
sion parameters, one can write one C �le and apply it to multiple
platforms and �rmware versions.

Besides simply overwriting a function with a patch function, we
supply a set of macros to create patches based on inline Assembly

Session: Innovative Experimentation Platforms and Methods WiNTECH17, October 20, 2017, Snowbird, UT, USA.

61

code. �ey are de�ned in the patcher.h �le. Each macro expects a
name as �rst parameter that in�uences how the generated symbol is
called in the linker scripts. Placement is done with the at-a�ribute.
Below, we introduce our macros:

BLPatch(name, func) and BPatch(name, func): Both create
branch instructions resulting in jumps to the target function func
that can either be a function name or an address. �e addresses
are calculated relative to the program counter. During runtime,
BLPatch additionally sets the link register to the address a�er the
created BL instruction which allows to call functions that return.

HookPatch4(name, func, inst): Calls a hook function func
before calling the original function by overwriting the �rst four
bytes of the original function with a branch instruction to an in-
termediate function. �e la�er pushes the �rst four registers and
the link register to the stack to save them from being overwri�en
in the hook function func. A�er calling the hook function, this
patch pops the saved registers from the stack and executes the
instruction inst before continuing to execute the original function.
�e parameter inst needs to be the assembler instruction that was
overwri�en in the original function.

GenericPatch1/2/4(name, val): Overwrites one, two or four
bytes with val in the original �rmware. We can use the four-byte
version to overwrite function pointers in a function table. �e
target function address should be increased by one to indicate
�umb instruction set.

All symbols, that we do not place explicitly using the at-a�ribute,
are collected by the linker and stored in the region de�ned by the
targetregion-pragma. For every code �le, this should be set to
the patch-region that is located at the end of the original ucode
blob in the �rmware that was freed by ucode compression. Below,
we describe how it works.

3.2 Where to embed the patch code?
Symbols that are not explicitly placed are collected in memory re-
gions that also need placement in the �rmware �le at a location
that is not overwri�en during runtime. Most �rmware �les do
not have such empty spaces, hence, we needed to �nd a way to
clear space for our patches. Analysing the �rmware at runtime, we
realized that certain functions and data regions are only needed
during the initialization of the Wi-Fi chip. A�er using the data, the
hndrte_reclaim function is called to free the now unused space
and assign it to the heap. �e largest chunck ofmemory is freed a�er
writing the ucode �rmware into the memory of the programmable
state machine (PSM) responsible for real-time operations. Analyz-
ing this ucode binary reveals that it can be compressed by roughly
50 percent, reducing the size of 44.7 KiB to 22.4 KiB on a BCM4339.
�is is free space that can be used for our �rmware patch code.
Hence, we integrated a ucode compression mechanism based on the
de�ate algorithm into our build toolchain. When the ucode should
be loaded into the code memory of the PSM, we decompress it
on-the-�y as implemented in the ucode_compression_code.c �le
whose wlc_ucode_write_compressed function we call by patch-
ing the call to wlc_ucode_write in the wlc_ucode_download func-
tion. To �nally reserve the freed space for our patches, we reduced
the amount of memory assigned to the heap and placed our patch
binaries at the end of the former ucode region. As a side-e�ect,

ucode compression also allows to simply extend the ucode without
the need to worry about its size for storing it in the ARM �rmware.

3.3 How to patch read-only memory?
Besides the �rmware that is loaded by the driver into the RAM
of the Wi-Fi chip, the chip itself holds a part of the �rmware in
read-only memory (ROM). Even though, it is not possible to per-
manently overwrite this part, a �ash patching unit exists in most
Broadcom chips. It overlays a number of up to eight byte long mem-
ory chunks by data de�ned in RAM. Reading from those patched
locations delivers the overlayed data. Hence, it is possible to redi-
rect the program �ow from ROM to RAM by simply overlaying
an instruction in ROM with a branch instruction (e.g., by using
a BLPatch or BPatch). Internally, �ash patches are de�ned by
creating an entry in the �ash patch con�guration array consist-
ing of the target address, the length of the patch and a pointer to
the patch data in RAM, which is also stored in an array of eight
byte long entries. As the original �rmwares do not reserve space
to add new �ash patch con�gurations, we automatically extract
all �ash patches and store them in a �ashpatch.c �le using our
fpext utility. During the �rmware build, we reassemble the �ash-
patches and place them into the space freed by ucode compression.
A�er �rmware initialization this space is freed and assigned to
the heap. To de�ne a �ash patch in C code, one simply uses the
keyword “�ashpatch” as second parameter of the “at”-a�ribute:
__attribute__((at(..., "flashpatch", ..., ...)))

3.4 How to analyze the �rmware?
To analyze the whole �rmware binary, the ROM of the Wi-Fi chip
needs to be extracted. To extract a clean ROMdumpwithout applied
�ashpatches, the extractionmust take place before the con�guration
of the la�er started during runtime. To achieve this, we created
�rmware patches that copy the whole ROM content into the RAM
directly a�er starting the chip (rom_extraction projects in the
Nexmon repository [13]). �en, we wait in an endless loop. To
avoid hanging up the driver during normal interface setup, we use
dhdutil’s download function to reload the �rmware on an already
running Wi-Fi chip. �en, we use dhdutil’s membytes function to
dump the RAM content and thereby dump the previously copied
ROM contents. To analyze this binary in conjunction with a RAM
�rmware �le, �ashpatches should be applied manually to the ROM
�le using the fpext utility.

Equipped with RAM and ROM binaries, we can create a complete
binary of the Wi-Fi �rmware. To analyze this �rmware and �nd
new functions and data structures, we can use IDA Pro with the
ARM Decompiler plugin. �e la�er allows to create C-like code
that helps to understand the program �ow and allows comparisons
to other code sources such as the brcmsmac driver that contains
functions similar to those in the �rmware. In IDA we �rst make
sure that the code is interpreted as ARM �umb code in li�le-
endian byte order. �en we start looking for strings that look
like function names, �nd their references and name the enclosing
functions accordingly. �en we compare the found function names
with functions of the brcmsmac driver or binaries of the wl driver
including symbol names to label more functions in the �rmware
binary. �e brcmsmac code also helps to name function arguments

Session: Innovative Experimentation Platforms and Methods WiNTECH17, October 20, 2017, Snowbird, UT, USA.

62

and de�ne their types as structures to make the code more readable.
Once functions are found and declared in one �rmware version, we
can use zynamics’s bindiff plugin for IDA Pro to �nd the same
functions in other �rmwares, even those of other chips.

3.5 How to adapt to new �rmware �les?
Each chip has a subdirectory (e.g., BCM4339) under the �rmwares
directory. Each �rmware version has an individual subdirectory
(e.g., 6 37 34 43) in such a chip subdirectory. Besides the �rmware
�le (e.g., fw bcmdhd.bin), it contains a de�nitions.mk �le with
�rmware speci�c addresses, such as the start address and size of
the original ucode. To adapt the de�nitions.mk �le, we need to
�nd those addresses in the new �rmware mainly by comparing
disassembled code pa�ern of an already analyzed �rmware with
those of the new �rmware. A�er updating the de�nitions, we need
to �nd all functions we want to call from our �rmware patches.
If we already have an IDA �le of another �rmware version, we
can �nd functions in new �rmwares by using IDA’s bindi� plugin.
A�er that we append new “at”-a�ributes to function stubs in the
wrapper.c �le containing the addresses in the new �rmware. To
create a new patching project, it is best to copy one of the nexmon
projects from another �rmware to the newly added one and adjust
all “at”-a�ributes to place patches at the correct locations in the
new �rmware �le. In the next section, we present how researchers
may use the extracted information to achieve goals o�en required
in a testbed but hard to reach with unmodi�ed FullMAC �rmwares.

4 ACHIEVING TESTBED GOALS
Researchers o�en write �rmware patches to accomplish higher
goals that are not achievable with unmodi�ed Wi-Fi �rmwares.
�is includes the activation of monitor mode and frame injection to
implement custom low-layer communication protocols in the oper-
ating system followed by a �rmware implementation with reduced
latencies and lower power consumption. Besides regular frame pro-
cessing, Nexmon further o�ers direct access to the physical layer
that, for example, unleashes SDR-like features to transmit arbitrary
signals as done in [11]. Below, we present a selected set of goals
that can be achieved, mainly focusing on the extension of frame
processing capabilities and more control over frame transmission
parameters.

4.1 How to handle receptions?
In the ARM processor, all frames received by the D11 core are han-
dled in the wlc_bmac_recv function that collects them from the
DMA ring bu�ers and passes them to the wlc_recv function. If
monitor mode is active (e.g., by calling nexutil -m1), this func-
tion calls the wlc_monitor function that extracts receive statistics
and writes them into the wl_rxsts structure. �en it passes both
the statistics and the frame to the wl_monitor function. �is is
the function we hook to implement monitor mode with radiotap
headers. If the Wi-Fi chip is connected to a network, the wlc_recv
function also calls a chain of functions used to strip Wi-Fi headers
and replace them with Ethernet headers. At the end, wl_sendup is
called to initiate the transfer of the received frames to the host’s
operating system. �is makes wl_sendup the perfect place to im-
plement mechanisms with the bene�ts of running in the �rmware

without the need of handling Wi-Fi headers. We use it in our ex-
perimental evaluation in Section 5.

4.2 How to perform transmissions?
If connected to a network, we can trigger the transmission of Eth-
ernet frames, for example, a�er processing a received frame in
wl_sendup. To this end, we call the wlc_sendpkt function. It
strips the Ethernet headers, adds Wi-Fi headers and chooses physi-
cal layer parameters required to reach the destination. Responsible
for actually se�ings those parameters is the wlc_d11hdrs_ext func-
tion that appends a d11txhdr structure to each frame before it is
passed to the D11 core for transmission. To this end, frames are �rst
enqueued with the wlc_prec_enq function and then transmi�ed
by calling wlc_send_q. To change transmission parameters, we
can place a hook at the end of the wlc_d11hdrs_ext function and
change the d11txhdr structure accordingly.

To inject arbitrary frames, Nexmon o�ers the sendframe helper
function. It can send raw 802.11 frames starting with Wi-Fi headers.
For those frames, sendframe calls the light-weight wlc_sendctl
function discovered by Ho�mann in [7]. It takes raw frames, adds
the d11txhdr structure, enqueues frames and triggers their trans-
mission. Additionally, sendframe can handle frames that already
contain the d11txhdr structure. �en sendframe only enqueues
and sends those frames. �e la�er option is useful to gain more
control over the transmission se�ings by manually calling the
wlc_d11hdrs_ext function to create the d11txhdr structure and
then modifying its contents before calling sendframe. In any case,
frames for injection either need to come from the host or need to
be cra�ed from scratch in the �rmware. For the la�er, we need to
create an sk_buff structure by calling pkt_buf_get_skb and �ll
its data section with the raw frame bytes.

4.3 How to handle retransmissions?
Retransmissions are handled by the D11 core. Whenever a transmit-
ted frame requires an acknowledgment by the receiver, the frame
is retransmi�ed as o�en as de�ned by the short retry limit (SRL)
respectively the long retry limit (LRL). By default SRL is set to 6
and LRL to 7. We can change the values by using the WLC_SET_SRL
and WLC_SET_LRL ioctls either with nexutil from userspace, or
within the �rmware by calling our set_intioctl helper function.
For retransmissions, we can de�ne up to four fallback rates on
802.11ac chips. �e �rst is used for the �rst three retransmissions,
the second for the fourth, the third for the ��h and the fourth for
any other retransmission. To de�ne those rates, we hooked the
wlc_antsel_antcfg_get function that is called during the prepara-
tion of the d11txhdr. Using this hook, we get access to an instance
of the ratesel_txparams structure that contains the rspec array
to de�ne the retransmission rates.

4.4 How to set transmit powers?
Broadcom o�ers the qtxpower iovar that can be set using the
WLC_SET_VAR ioctl. It allows to overwrite the transmit power for
all transmi�ed frames. In FullMAC �rmwares, this se�ing can
only choose transmit powers smaller than the regulatory limita-
tions. To exceed these limitations, a debugging �rmware is required

Session: Innovative Experimentation Platforms and Methods WiNTECH17, October 20, 2017, Snowbird, UT, USA.

63

that checks the txpwroverride variable. As we also want to en-
able arbitrary power se�ings in o�-the-shelf �rmwares, we sim-
ply nop the call to the ppr_compare_min function that calculates
the minimum between user targets and the regulatory limits in
the wlc_phy_txpower_recalc_target function. �e value set by
qtxpower is �rst translated into a power index that the hardware
uses to set actual gains at the ampli�ers automatically. To also get
full control over the ampli�er values, we need to deactivate hard-
ware power control using the wlc_phy_txpwrctrl_enable_acphy
function and can then abuse the wlc_phy_txcal_cleanup_acphy
function to set all gains manually according to the de�nitions in
the ac_txgain_settings structure.

4.5 What are the internal structures?
To handle the internal state of the �rmware, a number of structure
instances are used and passed to functions. Most of these instances
are created on the heap during the initialization of the �rmware.
Even though, they are always placed at the same positions in one
�rmware version, absolute references to these addresses should be
avoided in the patch code as �rmware patches allocating space on
the heap can lead to address changes of these structures. If the loca-
tion of one structure is known, we can derive the addresses of the
other structures. �e wlc_info structure is the main structure han-
dling the state of the high-layer driver functionalities such as the
association state. It is mainly passed to functions starting with wlc_,
but not to those starting with wlc_bmac_. �e la�er normally ex-
pect the wlc_hw_info structure managing hardware speci�c states
such as access to the physical layer. �e above mentioned structures
are independent of the operating system. �e osl_info structure
keeps track of using operating system resources such as those used
for the creation of sk_buff instances. Even though, no operating
system is running on the Wi-Fi chip, Broadcom o�ers a minimal
library with functions required to operate the Wi-Fi �rmware. An-
other operating system speci�c structure is wl_info that is required
by functions interacting with the operating system interface, for
example, to pass frames from the �rmware to the Linux kernel.

4.6 How to set channel speci�cations?
For some experiments, researchers need to set restricted channel
speci�cations (e.g., to use channel 14). On FullMAC chips, all avail-
able channels are de�ned in the �rmware and only those allowed
in the regulatory domain are selectable. �ese channels are also
re�ected in the operating system. Hence, by patching the �rm-
ware, we automatically modify the channels selectable by the host
system. When the list of selectable channel speci�cations is gener-
ated at chip initialization or when changing regulatory domains,
the wlc_valid_chanspec_ext function is called for all possible
channel speci�cations. It returns 1 for every valid selection. To
activate more channels, we hook the wlc_valid_chanspec_ext
function and return 1 for any channel we intend to activate. �is
only allows to select channels that are standardized. To further
set arbitrary speci�cations (e.g., to activate 80MHz bandwidth
in the 2.4 GHz band as demonstrated in [11]), we need to patch
the wf_chspec_malformed function to always return 0 to disable
checking for a legal set of parameters.

4.7 How to talk to the �rmware?
For many applications, it is helpful to con�gure a �rmware during
runtime or extract information for debugging purposes. Below,
we present means to directly access the chips memory (1), use the
printf function (2), extract data through tunnels using the user
datagram protocol (UDP) (3) and use ioctls to control the �rmware
(4). To directly access the chip’s internal memory (1), we can use
the dhdutil with its membytes option. It allows to read from and
write to arbitrary memory locations in the RAM and may also di-
rectly read the ROM on some chips. Additionally, dhdutil o�ers
the consoledump option that dumps the internal console bu�er of
the �rmware to which we can write by calling the printf func-
tion (2). �is allows to pass small amounts of textual data to the
user space. To send more data, we can encapsulate it in a UDP
frame (3) and send it to the broadcast Internet protocol (IP) address
255.255.255.255. �ose frames are always accepted by the Linux
kernel and passed on into the user space, where they can even be
received by apps without root privileges. To implement this in the
�rmware, we �rst create a new sk_buff bu�er and �ll it with the
desired data and then prepend Ethernet, IP and UDP headers using
our prepend_ethernet_ipv4_udp_header helper function (that
uses UDP port 5500 by default). �en, we call the xmit function of
the wl device to send the frame to the host. Alternatively, to initiate
transfers from the �rmware, a user-space program such as nexutil
can also initiate a synchronous data exchange with the �rmware
by calling ioctls in the �rmware (4). Each ioctl contains a command
number, a pointer to a bu�er to exchange data and the length of
this bu�er. Ioctls can either only set data or set and get data back
from the �rmware. For the two directions, nexutil o�ers the two
parameters -s<command_number> and -g<command_number> and
may either pass integers, strings, raw data from the standard in-
put or base64 encoded raw data to the �rmware. �ere, ioctls are
handled in the wlc_ioctl function that we hooked to check for
custom ioctl command numbers and handle them in ioctl.c. To
easily send back strings to the caller of a get-ioctl, we o�er the
argprintf function, that writes strings into the ioctl bu�er and
handles the remaining size automatically. In our git repository [13],
you can �nd examples for all four ways of communication as well
as the sources to build �rmware patches and the used utilities.

4.8 How to modify the real-time �rmware?
�e real-time �rmware is the ucode running in the programmable
state machine (PSM) in the D11 core. In FullMAC chips, the ARM
�rmware contains the ucode as binary blob and loads it into the
ucode memory of the D11 core. As only seven out of eight ucode
bytes are actually used, some �rmwares store the ucode with
the eighth byte omi�ed. To extract those �rmwares, we use our
ucodeext utility. For ucodes that contain the eighth byte, we simply
use dd to extract them from the ARM �rmware. A�er extraction, we
use the b43-dasm disassembler contained in the b43-tools3 to disas-
semble the ucode. As illustrated in Figure 1, the PSM has access to
condition registers and special purpose registers (SPRs). To replace
register numbers by speaking names de�ned in the cond.inc and
spr.inc, we use the b43-beautifier. As it is still hard to under-
stand the meaning of uncommented code, we intended to analyze
3b43-tools repository: h�ps://github.com/mbuesch/b43-tools

Session: Innovative Experimentation Platforms and Methods WiNTECH17, October 20, 2017, Snowbird, UT, USA.

64

https://github.com/mbuesch/b43-tools

it to �gure out its meaning. To this end, Koch realized in [9] that
di�erent ucodes have a very similar structure as the OpenFWWF
�rmware [4] created by Gringoli et al. for older BCM4306/11/18/20
Wi-Fi chips. Hence, by comparing code sections, we can get an
understanding of how disassembled �rmwares work. To change
the real-time behaviour of the �rmware, we need to modify the
assembler code or use a tool such as the Wireless MAC Processor
presented by Tinnirello et al. in [14] to graphically design state
machines representing the behavior of the �rmware. A�er modi-
fying the ucode, we can reassemble it into a �rmware binary and
embed it a�er compression in the ARM �rmware �le. To avoid
sharing the original ucode sources when publishing patches, we
also provide means to apply patches containing only new code
to freshly disassembled �les. Overall, ucode modi�cations allow
very advanced applications on o�-the-shelf devices, such as par-
tial packet recovery as presented by Han et al. in [5], or reactive
jamming as presented by Schulz et al. in [11].

4.9 Handling So�MAC chips
Compared to the FullMAC cards that implement the higher layer
MAC operations in the ARM microcontroller of the Wi-Fi chip,
So�MAC cards implement those in the Wi-Fi driver running on
the host’s operating system. To modify the operation of those
drivers, multiple options exist. If the driver source code is available
(e.g., the brcmsmac driver or the b43 driver), one can change it and
rebuild the whole driver. If the driver is partially available as source
code (e.g., for the cfg80211 interface to the Linux kernel) and as
object �les (for device speci�c implementations), one can replace
or hook original driver functions, by linking against object �les
that overwrite symbols of the original driver. �is is a valid option
to patch the proprietary broadcom-wl driver. If the driver is only
available as binary (e.g., the macOS version of the wl driver), one
may use the Nexmon approach to patch the driver as if it was a
closed-source �rmware running on a Wi-Fi chip.

5 EXPERIMENTAL RESULTS
To demonstrate the bene�ts of modifying �rmwares with Nex-
mon, we chose a simple ping o�oading application4. Instead of
answering ping requests in the kernel, we do it in the �rmware. We
chose the ping application as it is similar to forwarding frames in a
mesh setup, but does not require to modify the kernel on our own.
Additionally, handling frames in the kernel is the most e�cient
implementation achievable on the host’s processor running Linux.
Our setup consists of two Nexus 5 smartphones running the rooted
stock �rmware version M4B30Z and are located one meter apart.
Both are connected in Ad-Hoc mode on the otherwise unused chan-
nel 6 with 20MHz bandwidth. �ey exchange 802.11ac frames with
MCS 8, which is normally not supported in the 2.4 GHz band, but
still available due to Nexmon. We disabled retransmissions and
AMPDUs to send only one frame per ping request and reply. Us-
ing the Android Debug Bridge (ADB), we setup the �rst phone to
transmit ping requests with 1200 byte payload to the second phone.
For our experiments, we increased ping intervals by a factor of
5/3, resulting in the targeted frame rates shown in our Figures 3
to 5. On the second phone, we installed our modi�ed �rmware
4Ping o�oading application source code: h�ps://nexmon.org/ping o�oading

0 6 10.1 16.8 28 46.7 77.8 129.6 216 360 600 1000
250

300

350

400

450

500

550

Targeted Number of Pings per Second

Po
w
er

Co
ns
.[
m
W
] Ping handling in kernel

Ping handling in �rmware
Idle in Ad-Hoc mode

Figure 3: Operating Ad-Hoc mode consumes 254mW. Han-
dling pings in the �rmware smoothly increases power con-
sumption, while handling frames in the kernel leads to a
sudden increase with high variations.

0 6 10.1 16.8 28 46.7 77.8 129.6 216 360 600 1000
0

100
200
300
400
500
600
700

Targeted Number of Pings Requests per Second

Re
qu

es
ts
pe
rS

ec
on

d Ping handling in �rmware
Ping handling in kernel
Target rate

Figure 4: �e numbers of actually transmitted ping requests
stay below their target, especially when handling pings in
the kernel instead of the �rmware.

0 6 10.1 16.8 28 46.7 77.8 129.6 216 360 600 1000
0

2

4

6

8

10

Targeted Number of Pings per Second

Ro
un

d
Tr
ip

Ti
m
e
[m

s] Ping handling in kernel
Ping handling in �rmware

Figure 5: �e round trip time to answer pings in the �rm-
ware is deterministically low at 230 µs, while it strongly
varies and ismuchhigher in the kernel, likely due towaking
up from energy-saving states.

that hooks the call to the handler function used for o�oading the
address resolution protocol (ARP) in the wl_sendup function that
is called a�er replacing Wi-Fi headers by Ethernet headers, shortly
before pushing up frames to the host. Here, we check for ping
requests and generate ping responses encapsulated in Ethernet
frames that we send using the wlc_sendpkt function that creates
the correct Ad-HocWi-Fi headers and transmits the frames. During
our experiments, we can toggle this ping o�oading functionality

Session: Innovative Experimentation Platforms and Methods WiNTECH17, October 20, 2017, Snowbird, UT, USA.

65

https://nexmon.org/ping_offloading

by using an ioctl. To measure the power consumption with dis-
abled or enabled ping o�oading, we a�ached a Monsoon Power
Monitor to the ba�ery ports of the second phone and installed a
modi�ed kernel5 with disabled LTE to remove periodic peaks in
the measurements caused by the LTE driver.

In Figure 3, we present our power consumption results. �ey
show that operating the phone in Ad-Hoc mode consumes 254mW,
due to constantly running the receiver to listen for new frames.
�e increase in power consumption for handling only a few pings
per second in the �rmware is negligible and only increases for high
frame rates due to the power spent for sending ping responses.
Handling frames in the kernel, however, requires between 116
and 194mW of additional power compared to idle operation. To
analyze why the power consumption of handling frames in the
kernel stagnates for high frame rates, we analyzed the number
of actually transmi�ed ping request frames and realized that it
stays below the targeted number when more than 200 pings per
second should be transmi�ed as illustrated in Figure 4. Due to less
transmi�ed ping replies, the power consumption saturates. While
the kernel implementation can only handle around 220 pings per
second, the �rmware achieves around 560. Our �rmware patch
also outperforms the kernel implementation with respect to round
trip times (RTTs), as illustrated in Figure 5. We measured RTTs by
subtracting the timestamps of ping requests and replies captured
with a laptop to neglect the e�ect of handling ping frames in the
user space of the �rst phone. Our results show that the �rmware
deterministically achieves 230 µs RTTs, while the kernel has RTTs
between 6 and 8ms for handling less than 28 fps and RTTs around
2ms for higher frame rates. �e high RTTs likely result from the
fact that the kernel may fall into energy-saving mode between
processing pings at low frame rates and needs to wake up for every
single ping request.

6 DISCUSSION
With our simple ping o�oading experiment, we demonstrated that
�rmware implementations are not only more energy e�cient than
kernel implementations. �eir response times are also lower and
deterministic, which results in higher frame handling rates. �ose
are important for low-latency applications, for example, to con-
trol machines. Having round trip times of 230 µs allows to answer
almost nine times faster than the kernel implementation at high
frame rates. Further improvements could be achieved by answering
frames directly from the D11 core, similar to sending acknowl-
edgment from the template RAM. Programming the D11 core in
Assembler is, however, less comfortable than writing programs for
the embedded ARM processor. Overall, this paper only scratches
the surface of what is possible by reprogramming Wi-Fi �rmwares.
Especially in mobile wireless testbeds, Nexmon permits to imple-
ment algorithms in a ba�ery saving manner with reaction times
that were not achievable before. Because of its open-source nature,
everyone can use the Nexmon framework to extend �rmwares. We
encourage researchers to also publish the source codes of their
�rmware extensions to enhance reproducibility of their work. On
acceptance of this paper, we will also publish the source code of
our ping o�oading patch.

5No-LTE kernel: h�ps://github.com/seemoo-lab/nexmon energy measurement

7 CONCLUSION
With this work, we introduce researchers to Nexmon—a tool to
implement advanced applications in Wi-Fi �rmwares of FullMAC
chips running on smartphones and IoT platforms. Due to Nexmon’s
open availability, everyone can use our framework to setup their
own testbeds. By supporting multiple widespread and low-cost
platforms, we enhance the reproducibility of experiments and help
to extend existing works to advance research. �e results of our
ping o�oading experiments clearly demonstrate the bene�ts of
�rmware based implementations, namely reducing energy con-
sumption and latencies. As related work shows, unleashing the
access to lower-layer functions through our patching framework
allows to create new applications that run on o�-the-shelf devices
with their standard-compliant implementations. �is leads to a
higher acceptability of results compared to SDR implementations.

8 ACKNOWLEDGMENTS
�is work has been funded by the German Research Foundation
(DFG) in the Collaborative Research Center (SFB) 1053 “MAKI –
Multi-Mechanism-Adaptation for the Future Internet”, by LOEWE
NICER, LOEWE CASED, and by BMBF/HMWK CRISP.

REFERENCES
[1] Mango Communications. 2017. WARP Project. (2017). h�p://warpproject.org
[2] Cypress 17. Single-Chip 5G WiFi IEEE 802.11ac MAC/Baseband/Radio with Inte-

grated Bluetooth 4.1 and FM Receiver. Cypress. Document No. 002-14784 Rev.
*H.

[3] Jakob Eriksson, Hari Balakrishnan, and Samuel Madden. 2008. Cabernet: vehicu-
lar content delivery using WiFi. In Proc. of the 14th International Conference on
Mobile Computing and Networking (MobiCom). ACM, San Francisco, California,
USA, 199–210.

[4] Francesco Gringoli and Lorenzo Nava. 2009. OpenFWWF: Open FirmWare for
WiFi networks. (2009). h�p://netweb.ing.unibs.it/∼openfwwf/

[5] Bo Han, Aaron Schulman, Francesco Gringoli, Neil Spring, Bobby Bha�acharjee,
Lorenzo Nava, Lusheng Ji, Seungjoon Lee, and Robert R. Miller. 2010. Maranello:
Practical Partial Packet Recovery for 802.11.. In Proc. of the 14th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI). USENIX Associa-
tion, 205–218.

[6] Samer S. Hanna, Arsany Guirguis, Mahmoud A. Mahdi, Yaser A. El-Nakieb,
Mahmoud Alaa Eldin, and Dina M. Saber. 2016. CRC: Collaborative Research
and Teaching Testbed for Wireless Communications and Networks. In Proc. of
the 10th ACM International Workshop on Wireless Network Testbeds, Experimental
Evaluation, and Characterization (Wintech). ACM, New York, New York, USA,
73–80.

[7] Justus Ho�mann. 2016. Implementing a Mesh-Routing-Protokoll in the BCM4339
WiFi Chip. Diploma thesis. Technische Universität Darmstadt, Germany.

[8] P.W. Katz. 1991. String searcher, and compressor using same. (Sept. 24 1991).
h�ps://www.google.com/patents/US5051745 US Patent 5,051,745.

[9] Michael Koch. 2016. Reactive, Smartphone-based Jammer for IEEE 802.11 Networks.
Master’s thesis. Technische Universität Darmstadt, Germany.

[10] Katerina Pechlivanidou, Kostas Katsalis, Ioannis Igoumenos, Dimitrios Katsaros,
�anasis Korakis, and Leandros Tassiulas. 2014. NITOS testbed: A cloud based
wireless experimentation facility. In Proc. of the 26th International Teletra�c
Congress (ITC). IEEE, Karlskrona, Sweden, 1–6.

[11] Ma�hias Schulz, Francesco Gringoli, Daniel Steinmetzer, Michael Koch, and
Ma�hias Hollick. 2017. Massive Reactive Smartphone-Based Jamming using
ArbitraryWaveforms andAdaptive Power Control. In Proc. of the ACMConference
on Security and Privacy in Wireless & Mobile Networks (WiSec) 2017. Boston, USA.

[12] Ma�hias Schulz, Denny Stohr, Stefan Wilk, Benedikt Rudolph, Wolfgang E�els-
berg, and Ma�hias Hollick. 2015. APP and PHY in Harmony: A Framework
Enabling Flexible Physical Layer Processing to Address Application Require-
ments. In Proc. of the International Conference on Networked Systems (NetSys).
IEEE, Co�bus, Germany.

[13] Ma�hias Schulz, Daniel Wegemer, and Ma�hias Hollick. 2017. Nexmon: �e
C-based Firmware Patching Framework. (2017). h�ps://nexmon.org

[14] Ilenia Tinnirello, Giuseppe Bianchi, Pierluigi Gallo, Domenico Garlisi, Francesco
Giuliano, and Francesco Gringoli. 2012. Wireless MAC processors: Program-
ming MAC protocols on commodity Hardware. In Proc. of the 31st International
Conference on Computer Communications (INFOCOM). IEEE, Orlando, FL, USA.

Session: Innovative Experimentation Platforms and Methods WiNTECH17, October 20, 2017, Snowbird, UT, USA.

66

https://github.com/seemoo-lab/nexmon_energy_measurement
http://warpproject.org
http://netweb.ing.unibs.it/~openfwwf/
https://www.google.com/patents/US5051745
https://nexmon.org

	Abstract
	1 Introduction and Related Work
	2 In-Chip Processing
	3 Introducing Nexmon
	3.1 How to write patches?
	3.2 Where to embed the patch code?
	3.3 How to patch read-only memory?
	3.4 How to analyze the firmware?
	3.5 How to adapt to new firmware files?

	4 Achieving testbed goals
	4.1 How to handle receptions?
	4.2 How to perform transmissions?
	4.3 How to handle retransmissions?
	4.4 How to set transmit powers?
	4.5 What are the internal structures?
	4.6 How to set channel specifications?
	4.7 How to talk to the firmware?
	4.8 How to modify the real-time firmware?
	4.9 Handling SoftMAC chips

	5 Experimental Results
	6 Discussion
	7 Conclusion
	8 Acknowledgments
	References

