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Abstract—Despite the growing interest in cross-technology
communication, its application to real-world systems is still
limited, as existing schemes are mostly unidirectional and
technology-specific. The lack of generic solutions as well as the
complexity of their integration reduces the applicability in a
broader scope. In this paper, we propose a solution to augment
Wi-Fi, BLE, and ZigBee devices with the ability to transmit and
receive cross-technology broadcast frames alongside their existing
functionality. After experimentally evaluating the performance of
our solution on a variety of hardware platforms, we leverage
it to build a gateway-free smart home, where a smartphone
can simultaneously control heterogeneous smart objects. The
smart objects, which include an off-the-shelf ZigBee light bulb
and a BLE-enabled door lock from different vendors, perform
cross-technology communication while retaining their original
functionality and can maintain duty-cycled operations.

Index Terms—Cross-technology communication, IoT, Nexmon,
Smart door lock, Smart light bulb, BLE, IEEE 802.15.4, Wi-Fi,
ZigBee, X-Burst, Broadcom bcm43, Raspberry Pi, Nexus 6P.

I. INTRODUCTION

In recent years, a considerable number of wireless com-

munication technologies have emerged to satisfy the diverse

requirements of various Internet of Things (IoT) applications.

Although many of these wireless technologies operate on the

same radio frequencies, their incompatible physical layers

(PHYs) often prevent a direct data exchange between devices.

Because of this, the use of multi-radio gateways is necessary
to allow data collection or dissemination across heterogeneous

appliances and networks, e.g., in the context of smart homes

as well as industrial and health-care IoT systems [1], [2].

Gateway-based communication, however, introduces addi-

tional costs as well as translation overhead, reduces scalability,

and further increases the network traffic in already crowded

unlicensed industrial, scientific, and medical (ISM) bands.

To address this issue, recent efforts have focused on the de-

velopment of cross-technology communication (CTC) schemes

giving heterogeneous wireless devices the ability to directly

exchange information. Due to the popularity of the license-

free 2.4GHz ISM band, the vast majority of works on CTC

have targeted communication between technologies operating

in these frequencies (e.g., Bluetooth Low Energy (BLE),

ZigBee1, and Wi-Fi). CTC schemes are typically based either

1Although we explicitly refer to ZigBee throughout this paper, we implicitly
refer to the body of technologies built on top of the IEEE 802.15.4 PHY.

on energy sensing and the adoption of packet-level proper-

ties [3]–[6] or on PHY emulation techniques enabling commu-

nication at a high throughput [7]–[10]. Their use is promising

not only to avoid the use of multi-radio gateways, but also

to enable on-the-fly reconfiguration of sensors [11] as well as

the development of coexistence mechanisms mitigating cross-

technology interference and improving spectral efficiency [12].

Limited real-world use of CTC. Despite the growing interest

in the topic and the large number of schemes being proposed,

CTC remains so far confined to academia and its application

to real-world IoT systems is still rather limited. For example,

to date, there is still no study showing how to concretely
leverage one of the key benefits of CTC – the ability to perform

gateway-free communication across heterogeneous devices –

to revolutionize a given IoT application domain. A few works

have argued that directly sharing information without the

assistance from multi-radio gateways would be a game changer

in the development of smart homes [4], [9], [13], a sector

plagued by severe interoperability issues leading to frustration

among end-users [14], [15]. However, the concrete use of

CTC in the smart home context or in other IoT applications

that would benefit from gateway-free communication has not

been explored yet, and the corresponding challenges hence

remain unsolved. We identify two main reasons that led to

the status quo.

Lack of generality and missing broadcast support. Existing

CTC solutions, especially recent PHY emulation approaches,

are often not generic, i.e., they exploit properties in the

modulation process to enable a unidirectional data exchange

between two specific technologies (e.g., Wi-Fi →ZigBee [9],

BLE→ZigBee [7], or BLE→Wi-Fi [16]). This limits the

applicability of CTC, as the use of point-to-point unidirec-

tional communication significantly increases the complexity

in coordinating multiple heterogeneous devices. The design of

CTC solutions should rather be steered towards a universal

scheme leveraging technology-independent primitives, so to

transparently transmit data to any device. This would enable

the transmission of cross-technology broadcast frames to

several heterogeneous devices simultaneously, which not only

reduces complexity and traffic, but also facilitates common

network tasks such as neighbour discovery and service adver-

tisement [17].

1
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Complex integration in constrained IoT devices. Existing CTC

schemes often require hardware changes [18], [19] or are

implemented on platforms with plentiful resources, such as

laptops [4], [12] and software-defined radios [19]–[21]. Little

effort has been put on simplifying the integration of CTC

functionality on off-the-shelf IoT devices, especially those

with highly-constrained resources (i.e., with limited processing

power, energy budget, and memory capacity). This hinders

the applicability of CTC in real-world systems encompassing

low-power wireless sensors and actuators, which are rather

pervasive in many IoT application domains. Furthermore, CTC

has often been treated as a standalone piece of functionality

and was rarely integrated alongside the native communica-

tion stack of a device. This makes it difficult to upgrade

existing (legacy) devices with CTC-related features without

impairing or even replacing existing functionality. In prior

work [5], we went the first steps towards the development

of a generic framework, named X-Burst, supporting CTC

among constrained IoT platforms. However, we only produced

a preliminary proof-of-concept on ZigBee and BLE devices

running Contiki [22] and did not fully explore how to integrate

CTC beside the existing operations of each device.

Contributions. In this paper, we address the aforementioned

problems and enrich off-the-shelf Wi-Fi, BLE, and ZigBee de-

vices with the ability to transmit and receive cross-technology

unicast and broadcast frames alongside their existing com-

munication stacks. We achieve this by extending the X-Burst

framework [5] with a scheduler orchestrating the transmission

and reception of cross-technology frames in parallel to the

operations of native communication stacks, as well as with

support for Wi-Fi devices. The latter is challenging, given that

common Wi-Fi devices do not expose support for sampling

the received signal strength (RSS) – a necessary feature to

decode cross-technology frames. An experimental evaluation

on a variety of commercial Wi-Fi, BLE, and ZigBee de-

vices shows that we can exchange cross-technology broadcast

frames at data rates above 1 kbps; and further quantifies the

impact of CTC activities on the existing communication stack

of a device as well as on its energy efficiency.

We leverage our findings to build a smart home solution
in which a smartphone can use its Wi-Fi interface to simul-

taneously control smart objects operating in the 2.4GHz band

without the need of any multi-radio gateway. The off-the-shelf
smart objects, which include a ZigBee light bulb and a BLE-

enabled door lock from different vendors, are augmented with

the ability to interact with surrounding devices using CTC, i.e.,

they still retain their original functionality and can maintain

duty-cycled operations. To the best of our knowledge, this

work showcases the first concrete use of CTC that involves

multiple heterogeneous devices performing gateway-free com-

munication in a real-world IoT context.

The paper proceeds as follows:

• We first highlight how the use of gateways is often

troublesome in the context of smart homes, and discuss

how CTC can be leveraged to ease the problem (Sec. II).

• We enable support for Wi-Fi devices in X-Burst and

enable the creation of a cross-technology broadcast prim-

itive among the three most ubiquitous wireless technolo-

gies in the 2.4GHz ISM band (Sec. III).

• We enrich X-Burst with a scheduler orchestrating CTC

alongside the native communication stack of a device

without affecting existing functionality (Sec. IV).

• We evaluate experimentally the performance of our cross-

technology broadcast primitive, as well as the impact of

CTC activities on the existing communication stacks and

on the energy efficiency of a device (Sec. V).

• We develop a gateway-free smart home solution allowing

a direct communication among smartphones and commer-

cial devices employing Wi-Fi, BLE, or ZigBee (Sec. VI).

• After discussing our work’s limitations and the open chal-

lenges (Sec. VII), we describe related work (Sec. VIII) and

conclude with a summary of our contributions (Sec. IX).

II. CASE STUDY: GATEWAY-FREE SMART HOMES

The smart home market is one of the main drivers for

the recent growth of the IoT [23]. In the past few years, an

increasing number of vendors have developed a large variety

of devices to extend the smart home ecosystem: examples are

smart light bulbs, door locks, blinds, as well as sensors of

various kinds (e.g., smoke, motion, and air quality).

Smart home appliances have largely different requirements

and can significantly differ in terms of size, price, energy bud-

get, memory, and computational capabilities, as well as em-

ployed wireless technology. They range from mains-powered

devices with plentiful resources to constrained, battery-driven

platforms with limited energy budget.

The latter typically cannot afford the use of Wi-Fi and in-

stead employ low-power wireless technologies such as ZigBee

or BLE. Although these technologies can all operate in the

2.4GHz band, they are unable to directly exchange data with

each other and with Wi-Fi due to PHY incompatibilities.

Moreover, except for BLE, these low-power wireless technolo-

gies are rarely embedded in consumer electronic devices such

as tablets and smartphones, which are often used to orchestrate

the operations of a smart home. As a result, a smartphone that

does not embed a ZigBee radio cannot directly control any

ZigBee-based smart home device without a gateway.

Gateway nightmare and user frustration. To cope with

this problem, smart home appliances often come with dedi-

cated gateways: these enable interaction with nearby devices

based on another technology and can act as a bridge to

smartphones and tablets. Unfortunately, due to interoperability

issues [24], it can happen that each vendor requires the

use of a specific gateway, which may cause the deployment

of several gateways within a single home. This introduces

additional hardware, complex installation procedures, and ul-

timately results in costly, inefficient and non-scalable setups.

Fig. 1(a) exemplifies the problem: several gateways need to be

installed to let a smartphone interact with heterogeneous smart

home devices from different vendors.
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a) Conventional smart home setup b) Smart home setup with CTC

Fig. 1. The use of CTC in the context of smart homes allows to eliminate
multi-radio gateways, thereby reducing costs and simplifying installation.
With CTC, heterogeneous devices can interact directly and one can allow
a smartphone to control multiple appliances at once with the same app.

Recently, smart home hubs such as the Apple HomeKit or

Samsung SmartThings try to address this issue by providing

support for a variety of appliances from different manufactur-

ers with a single device [25]. However, they introduce a single

point of failure and can only cover a fraction of the devices

available on the market. Making sure that all appliances are

compatible with each other is hence left to the end users: a

quite heavy burden that can transform “the dream home into a

nightmare” [26]. Furthermore, using several different devices

introduces the “app problem", which refers to the obligatory

installation of individual apps for each component [27]. This

state of affairs often leaves customers frustrated and slows

down the further adoption of smart home devices [28].

Easing the problem using CTC. The ideal scenario for end

users is actually the one shown in Fig. 1(b), which depicts

heterogeneous smart home devices that are simultaneously
controlled from a smartphone using a single app, and that

are able to directly interact with each other. Such a scenario

does not only avoid the installation of gateways and maximize

the user’s flexibility when orchestrating all home devices, but

also enables an autonomous control system architecture (i.e.,

smart home devices can independently exchange sensor data

and adjust corresponding actuators without a central entity).

Such a gateway-free scenario can be achieved by means of

CTC [4], [9], which allows a direct information exchange be-

tween devices making use of incompatible wireless technolo-

gies. However, as highlighted in Sect. I, state-of-the-art CTC

solutions are still insufficient to make such a vision become

reality. On the one hand, existing schemes lack generality

and either focus on specific technologies/platforms, or are not

fully bidirectional. Indeed, a technology-independent cross-

technology broadcast primitive allowing a seamless interaction

between both powerful (e.g., smartphones) and constrained

(e.g., smart sensors and actuators) devices supporting BLE,

ZigBee, or Wi-Fi, has not been developed yet. On the other

hand, current CTC solutions do not focus on enabling an easy

integration into existing resource-constrained devices. To be

applicable in the smart home context, CTC should be added

alongside existing operations, i.e., it should have a minimal

footprint (so to still fit the remaining device memory) and

should coexist with the native communication stacks. We show

next how we fill these gaps and ultimately develop a prototypic

solution for the scenario shown in Fig. 1(b).

III. ENABLING A CROSS-TECHNOLOGY BROADCAST

BETWEEN WI-FI, BLE, AND ZIGBEE DEVICES

In previous work [5], we went the first steps towards a

generic framework supporting technology-independent CTC

primitives on constrained IoT devices. We have tailored this

framework, called X-Burst, to a few IoT platforms running

the Contiki operating system and employing a ZigBee or BLE

radio (i.e., the TI CC2650, Zolertia Firefly, and TelosB node).

To make X-Burst applicable to the scenario depicted in

Fig. 1(b), we must also enable a bidirectional communication

with off-the-shelf Wi-Fi devices and support more powerful

appliances such as smartphones. This is a non-trivial task,

as many Wi-Fi devices do not expose support for essential

features such as frame injection or RSS sampling, and as

operating systems for more powerful devices (e.g., Android,

Linux) offer much less flexibility in exchanging data between

user space and radio firmware compared to Contiki.

In this section, we tackle these problems and transform

X-Burst into an OS-independent CTC framework supporting

off-the-shelf Wi-Fi platforms and smartphones, ultimately en-

abling a cross-technology broadcast primitive among ZigBee,

BLE, and Wi-Fi devices. We start our discussion by providing

some background information on X-Burst’s working principle.

A. The X-Burst Framework

X-Burst is a portable CTC framework that allows to convey

information between heterogeneous devices by sending and

receiving precisely-timed energy bursts [5]. These bursts can

be transmitted by adjusting the length of legitimate packets,

and received by observing the energy level on the RF channel,

i.e., by performing a high-frequency RSS sampling. As most

wireless devices have the ability to transmit payloads of

arbitrary length and to perform energy detection (for clear

channel assessment), X-Burst is highly generic and potentially

allows any device to broadcast cross-technology frames. One

just needs to agree on a common RF channel where to

exchange cross-technology frames and on a shared alphabet
to encode and decode information. The alphabet specifies how

symbols are mapped to a predefined set of burst lengths, and

depends on the characteristics of the communicating devices

(e.g., the RSS sampling rate and the radio response time).

X-Burst is designed in a modular way to enable a high porta-

bility across multiple platforms and technologies. The original

core modules described in [5] are highlighted in light grey in

Fig. 2, whereas the modules in dark grey refer to the extensions

we will describe in the remainder of this paper. A key role in

making the framework generic plays the hardware abstraction
layer (HAL), which allows the separation of CTC-related

functionality from hardware-specific details. The main CTC

logic (e.g., the encoding/decoding process, the (dis)assembly

of cross-technology frames, and the mapping of symbols to

bursts using a given alphabet) thus remains hardware-agnostic
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Hardware Abstraction Layer...

Encoding

Frame Management

Alphabet

Application

Mapping
Decoding

CTC Event
Scheduler

Existing
Stack

BLE Wi-Fi

CTC Event Handler

sample_RSSsend_burst configure_radio

Initiation of CTC
transmission
and reception

ZigBee

Original core modules of X-Burst Extensions in this work

Radio

X-Burst CTC Stack

Fig. 2. Overview of our solution: X-Burst’s original core modules are
highlighted in light grey; our enhancements are highlighted in dark grey.

and portable, while only radio-related primitives have to be

implemented for each individual device. The HAL contains

functions required to transmit energy bursts of a given length,

to perform RSS sampling, and to configure the radio channel.

B. Enabling CTC on Off-the-Shelf Wi-Fi Platforms

In Contiki, an application has typically full access to the

radio driver and all low-level features: thus, the implemen-

tation of X-Burst, including its HAL, is rather straightfor-

ward. On powerful Wi-Fi platforms (e.g., on a Raspberry

Pi) and off-the-shelf smartphones, however, the radio cannot

directly be controlled by applications, but is shielded by the

operating system. Furthermore, several Wi-Fi modules run

closed-source firmware that does not expose low-level func-

tions (e.g., RSS sampling and monitor mode) by default. Ex-

amples of such closed-source modules are those produced by

Broadcom/Cypress, which are embedded in popular platforms

such as the Raspberry Pi 3/4, as well as several smartphones.

To overcome these limitations, we resort to the architec-

ture shown in Fig. 3, which extends the firmware of the

Wi-Fi radio and exposes the necessary features to the CTC

implementation running in user space. The illustration is

based on our implementation for the Raspberry Pi 3B+ and the

Nexus 6P smartphone, both embedding a Broadcom/Cypress

chip, but the general architecture is also applicable on other

platforms (e.g., using Atheros or Intel Wi-Fi modules). As

a Broadcom/Cypress chip runs closed-source firmware, we

make use of the Ghidra reverse-engineering tool [29] and of

the Nexmon C-based patching framework [30] to extend its

functionality. Ghidra allows to explore the radio’s capabilities

that can then be made available to user-space applications by

patching the corresponding addresses in the firmware. Nexmon

allows to create such custom firmware patches and to enable

monitor mode on a variety of Broadcom/Cypress chips.

We focus on the bcm43 module, embedded in the Rasp-

berry Pi 3B+ and Nexus 6P smartphone and use Nexmon to

extend its firmware to provide X-Burst’s HAL with access

to the necessary radio features. To expose the RSS sampling
capability, we implement a periodic timer triggering an exist-

ing energy detection function and tunnel the obtained RSS

information to user-space applications through the kernel’s

Application (e.g., Android app)

X-Burst CTC Stack (e.g., Python, qPython script)

Wi-Fi Firmware
ConfigurationRSS sampling

 HAL send_burst sample_RSS configure_radio

UDP IOCTLs

Packet transmission

Host OS (e.g., Raspbian, Android)

Wi-Fi Module (e.g., BCM4358, BCM43455c0)

L2 Socket

Host Device (e.g., RPi3B+, Nexus 6P)

Fig. 3. Architecture used to support CTC on Wi-Fi platforms following the
X-Burst core principles. The Wi-Fi radio firmware is extended to expose the
necessary radio features to the CTC implementation running in user space.

network stack. Specifically, we transfer data to user-space by

encapsulating it in UDP frames. When sent to the broadcast

IPv4 address (255.255.255.255), the frames are automatically

accepted by the kernel and passed on to user-space applica-

tions. This way, the HAL can retrieve the frames by listening

to a datagram socket. Using this approach, we can achieve

a RSS sampling rate of 10.3 and 5.9 kHz on the RPi and the

Nexus 6P, respectively. These values are rather slow compared

to BLE and ZigBee radios (e.g., the TI CC2650 BLE radio

offers a RSS sampling rate of 43.5 kHz) and have to be

accounted for in the alphabet computation. We further leverage

IOCTL system calls to configure the Wi-Fi channel (i.e., to

overlap with the operating channels of the other devices2) and

to enable monitor mode. The latter is required to transmit

Wi-Fi frames without prior connection to an access point. To

transmit energy bursts, one can exploit the frame injection

mechanism proposed in JamLab-NG [31]: by leveraging L2
sockets, the HAL can transfer raw Wi-Fi frames with a certain

payload size (i.e., corresponding to a specific burst length)

to the firmware, which are then transmitted using Nexmon’s

sendframe() function.

Exploiting all the aforementioned features, we are hence

able to fully support CTC on a Raspberry Pi 3B+ and a Nexus

6P smartphone, providing them with the ability to seamlessly

interact with both ZigBee and BLE devices.

Generality of the solution. The ability to access radio-

related features from user-space allows to implement the CTC

functionality in portable user-space scripts following X-Burst’s

original modular structure shown in Fig. 2. Our prototypic

implementation is based on a python script, which is applicable

to Linux-based operating systems like Raspbian or Android

(using a qPython interpreter). As the interaction with the

Wi-Fi firmware is solely carried out in the HAL, this script is

easily portable to different platforms and not limited to Wi-Fi

devices. Furthermore, our firmware patches can also be reused

on other Broadcom/Cypress platforms supported by Nexmon,

as they are written in portable C code.

2Wi-Fi radios use a much wider bandwidth (20 MHz), compared to BLE
and ZigBee devices (2 MHz each). Despite these asymmetries, the energy
bursts and their corresponding length can still be detected.
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IV. INTEGRATING CTC ALONGSIDE EXISTING

COMMUNICATION STACKS

In the original X-Burst paper [5], we have shown how

CTC could be integrated alongside Contiki’s network stack,

using ContikiMAC as a running example. Whilst this effort

has shown the importance of integrating CTC next to the

existing functionality of a device, it did not provide a generic

solution. In commercial smart home applications such as the

one shown in Fig. 1, indeed, the devices typically rely on full-

grown ZigBee and BLE stacks, which are not available in

Contiki. Hence, how to seamlessly integrate CTC alongside the

functionality of a commercial smart home device (e.g., a smart

light bulb such as the Ikea Trådfri) still needs to be investi-

gated. In this section, we show how to tackle this problem by

extending X-Burst with a CTC event handler and scheduler.

We further describe how to implement these modules on BLE

and ZigBee platforms available on the market.

A. CTC Event Handler and Scheduler

To coordinate radio access with existing communication

stacks in a seamless way, we introduce a CTC event scheduler
and a corresponding CTC event handler on top of X-Burst, as

shown in Fig. 2. The CTC event scheduler is responsible for

coordinating CTC activities alongside the native communica-

tion stack of a device and fires cross-technology transmission

(CTC TX) and reception (CTC RX) events accordingly. The

strategy with which CTC events are triggered is up to the

developer: one can fire them periodically, or exploit the time

in which the radio is idle. Such idle times can be inferred by

the CTC event scheduler based on knowledge of the MAC

protocol employed by the coexisting network stack [5], [17],

or autonomously learnt by detecting periodicity in time series

capturing the radio’s idle time [32], [33]. The CTC event han-
dler is in charge of configuring the radio for CTC operations,

of initiating the cross-technology receptions or transmissions

according to the scheduler’s instructions, and of restoring the

radio settings used by the coexisting communication stack.

Fig. 4 provides a deeper insight into the operations of the

CTC event handler and scheduler. For simplicity, we assume

that CTC RX events are periodic following a fixed interval

tInterval [17] that is shared across all communicating devices.

After each CTC RX event, the CTC event handler carries out

RSS sampling for a maximum duration tSense to check for

ongoing CTC transmissions. If a valid energy burst is detected

within tSense, the device tries to determine the beginning of

a CTC message by scanning for a preamble and eventually

receives the cross-technology frame. Otherwise, the CTC

operation is terminated immediately and the radio settings used

by the coexisting communication stack are restored: this also

keeps the radio on-time to a bare minimum. After a CTC

TX event, which can be scheduled as soon as the radio is

available (see Sec. IV-B), the CTC event handler triggers the

consecutive transmission of a cross-technology frame until

either an acknowledgement (ACK) is received, or a maximum

time is reached. To ensure correctness of the CTC operation,

one needs to ensure that:

Fig. 4. Inner working of the CTC event handler and scheduler.

• tSense > tAck: the time a device scans for energy bursts

must be greater than the longest ACK duration.

• tScan,preamble > tMsg+tAck: after a device has detected

an energy burst, it should scan for a preamble for a du-

ration that is proportional to the longest message (tMsg)

and ACK (tAck), as the detected energy burst may refer

to the beginning of a CTC transmission.

B. Implementation Remarks

While the CTC event handler is hardware-independent, the

implementation of the CTC event scheduler depends on the

software features of the employed communication stack. We

exemplify our discussion by analyzing the integration of CTC

next to the Silicon Labs EmberZnet ZigBee stack and the

Nordic Semiconductor BLE stack, respectively.

The Nordic Semiconductor BLE stack offers primitives to

request radio-access (for CTC RX and TX operations) during

defined time intervals, while ensuring the proper execution

of BLE-related tasks. This feature allows the CTC event
scheduler to initiate CTC operations such that a reliable data

exchange using BLE is guaranteed and implicitly results in a

prioritization of BLE communication over CTC.

On the contrary, the Silicon Labs EmberZnet ZigBee stack

does not provide a seamless scheduling of radio-related ac-

tivity, as ZigBee communication is not bound to fixed time

intervals. In case of non-preemptive access to the radio, the

CTC event scheduler has hence to coordinate the execution

of ZigBee and CTC tasks manually. The only information

available to the scheduler is whether the radio is currently

in use (i.e., if ZigBee communication is ongoing): whenever

this is the case, pending CTC events should be omitted to

avoid disrupting ZigBee activities. However, once a CTC event

has been triggered, ZigBee communication is halted. These

implementation differences, along with their implications, are

analyzed more in detail and evaluated in Sec. V-B.

V. EVALUATION

We perform next an experimental evaluation that quantita-

tively answers the following questions:

• What is the performance of our cross-technology broad-

cast primitive with respect to throughput, robustness, and

communication range? (Sec. V-A)

• Can we transmit cross-technology broadcast frames with-

out impairing existing communication stacks and while

maintaining energy-efficient operations? (Sec. V-B)
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Fig. 5. CTC throughput measured by the Nexus 6P smartphone during both
transmission (a) and reception (b) of cross-technology frames with different
payload size to/from different IoT devices. In most of the cases, the achieved
throughput is above 1 kbps.

A. Cross-Technology Broadcast Primitive

Building upon the concepts presented in Sec. III, we demon-

strate and evaluate the performance of our cross-technology

broadcast primitive across Wi-Fi, BLE, and ZigBee devices. In

the following experiments, we focus on the CTC implementa-

tion only, i.e., other communication mechanisms are disabled.

Setup. We use a variety of off-the-shelf IoT platforms: the

Nexus 6P smartphone and the Raspberry Pi (RPi) 3B+ (Wi-Fi),

the Nordic Semiconductor nRF52840DK and the TI CC2650

LaunchPad (BLE), as well as the Silicon Labs EFR32 Thun-

derboard Sense and the Zolertia Firefly (ZigBee). Unless

stated otherwise, the measurements are performed in an office

environment on (almost) interference-free channels (Wi-Fi ch.

9, ZigBee ch. 20, and BLE ch. 22). All devices are placed

1m apart and share a common alphabet consisting of 2-bit

encoding with four burst durations (224, 576, 928, 1280μs).

Throughput. In a first experiment, we let the Nexus 6P

smartphone broadcast 100 CTC messages back-to-back to all

other devices and repeat the experiment 10 times. Fig. 5(a)

shows the throughput of each device for different payload

sizes. Higher payload sizes enhance the throughput thanks

to a lower message overhead (e.g., preamble, header and

checksum). At a certain point, however, the probability of

decoding errors increases, leading to a lower throughput. The

variance strongly depends on the RSS sampling capabilities of

the receiving platform, and is particularly higher on the RPi,

as it offers the slowest RSS sampling rate. The throughput in

the other direction is shown in Fig. 5(b) and is more platform-

dependent, as it is a function of the radio response time, i.e., of

the minimum time required between the transmission of two

energy bursts. Overall, Fig. 5 shows that CTC across all three

technologies is possible with a data rate above 1 kbps, which

is more than sufficient for the exchange of control messages

or sensor data on constrained IoT devices. In principle, the

throughput can be significantly improved when using a faster

alphabet that is supported by all devices involved in the

communication. Fig. 6, for example, compares the throughput

achieved by the nRF52840DK (BLE) and the Thunderboard

Sense (ZigBee) when using the same alphabet used previously

and a faster one consisting of 4-bit encoding with sixteen burst

durations (224, 316, 408, . . . , 1664μs).

Fig. 6. CTC throughput of BLE and ZigBee devices with different alphabets.

Fig. 7. Packet reception rate (PRR) under different interference scenarios.

Fig. 8. PRR at increasing communication distance.

Robustness to RF noise. We repeat the same experiments

with a fixed payload size of 16 byte and evaluate the packet

reception rate (PRR) in the presence of RF noise. To this

end, we record Wi-Fi interference patterns using a TP-Link

USB Wi-Fi adapter and replay them repeatedly on the channel

used for CTC using tcpreplay. The Wi-Fi interference is

generated at a distance of 1m from the receiving device with a

transmission power of 13 dBm. Fig. 7 shows that, as expected,

the PRR decreases as the amount of RF interference increases.

While the PRR approaches 100% in absence of noise, it

decreases to 72–80% in the presence of audio streaming traffic,

and drops below 50% in the presence of video streaming

traffic. As the cross-technology frames are broadcasted, the

PRR drops in a consistent way for all receiving devices.

Communication range. We evaluate next the communication

range by observing the PRR as a function of the distance

between sender and receiver. Fig. 8 shows that BLE and

ZigBee devices can receive cross-technology frames without

a significant decrease of the PRR until 25m. In contrast, on

the Wi-Fi based smartphone, the PRR starts to visibly drop

at a distance of 20m. The reason lies in the wider bandwidth

of Wi-Fi compared to BLE and ZigBee: as the smartphone

measures the energy level on the entire 20MHz channel,

it is more difficult to detect the 2MHz-wide energy bursts

generated by BLE and ZigBee.

B. Integration into Existing Devices

Building upon the concepts presented in Sec. IV, we eval-

uate next the integration of CTC alongside the EmberZnet

ZigBee stack running on a Thunderboard Sense and the Nordic

Semiconductor BLE stack running on the nRF52840DK.

We are interested in quantifying the impact of CTC opera-

tions on the native communication stack running on the device

as well as the additional energy overhead introduced by CTC.
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Fig. 9. Packet reception rate (PRR) measured while simultaneously using
CTC in parallel to either ZigBee (a) or BLE (b).

Fig. 10. Measured current consumption during BLE and CTC activities.

Impact on native communication stack. We concurrently

transmit CTC and BLE frames to the nRF52840DK (or

ZigBee frames to the Thunderboard Sense) and observe the

PRR experienced by both network stacks. Specifically, we

transmit 100 CTC messages back-to-back, while BLE (or

ZigBee) frames are transmitted periodically using different

transmission intervals. Fig. 9 shows the results: the PRR

of CTC activities is always above 90%, in accordance with

the previous experiments. While the BLE communication is

unaffected (PRR=100%), some of the ZigBee frames are lost,

resulting in a PRR≈99%. Although minimal, this difference

highlights the observations made in Sec. IV: depending on the

primitives offered by the platform (e.g., the nRF52840DK al-

lows to request radio access so that BLE traffic is prioritized),

one may or may not be able to guarantee that CTC has no

impact on the native communication stack.

Energy overhead. We measure the current consumption of the

nRF52840DK using a Nordic Semiconductor Power Profiler

Kit while the BLE and CTC stacks operate in idle mode.

Fig. 10 shows the results when using a BLE connection

interval and tInterval of 300ms, as well as a tSense of 6ms.

Each idle CTC event consumes 257.8μJ of additional energy.
In comparison, a BLE advertisement event costs 54.9μJ, i.e.,
in this configuration, the additional CTC activities increase

the duty cycle from 0.87% to 2.97%. While the exact energy

expenditure depends on the traffic load, hardware character-

istics, and timing configurations (e.g., tInterval), these results

show that duty-cycled operations can be maintained, which is

important for constrained devices with limited energy budget.

VI. BUILDING A GATEWAY-FREE SMART HOME

We leverage our findings to build a gateway-free smart home

application, where a smartphone directly controls heteroge-

neous smart home devices available on the market using cross-

technology broadcast communication, as shown in Fig. 1(b).

TABLE I
MEMORY FOOTPRINT OF THE ENHANCED IKEA TRÅDFRI LIGHT BULB

Existing functionality CTC stack Free / Unused
ROM (kB) 240.69 (94%) 2.72 (1%) 12.58 (5%)
RAM (kB) 18.40 (57.5 %) 0.61 (2%) 12.99 (40.5%)

Fig. 11. Devices used in our gateway-free smart home prototype.

Equipping off-the-shelf smart objects with CTC. We make

use of two off-the-shelf smart home devices to emphasize

the real-world applicability of our solution: an Ikea Trådfri

light bulb using a Silicon Labs EFR32 ZigBee SoC, and a

Danalock V3, a BLE-enabled door lock employing a Nordic

Semiconductor nRF52382 SoC. We replicate the existing

functionality of both devices, including a full-grown ZigBee

and BLE stack, respectively, and integrate our CTC solution

next to it while ensuring a seamless coexistence with the native

communication stack, as described in Sec. IV. This ensures

that both devices can transmit and receive CTC frames while

still performing the original operations, i.e., the two devices

can be controlled with a smartphone as envisioned in Fig. 1(b),

but also with their original remote controllers.

Minimal memory footprint. The integration of CTC on

legacy devices is challenging due to the often limited storage

capacity. For example, the Ikea Trådfri light bulb offers only

256 kB of ROM, out of which 94% is already occupied with

existing functionality. Our solution requires less than 3 kB of

ROM, thus still fitting into the highly constrained memory.

Table I shows the memory footprint of our solution on the

Ikea Trådfri: similar values apply to other platforms.

Demonstration video. Building on top of the cross-technology
broadcast primitive presented in Sec. III, we let a Nexus 6P

smartphone use its Wi-Fi interface to directly and simultane-
ously control the ZigBee-based Ikea Trådfri as well as the

BLE-based Danalock V3 by means of CTC. We assign each

device a fixed 1-byte address and define several commands to

control the appliances accordingly. Our solution requires only

a single smartphone app, shown in Fig. 11(a), and does not

require any gateway. A demonstration video using the devices

shown in Fig. 11(b) is available on YouTube3.

3https://youtu.be/whD_H-UynJY
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VII. DISCUSSION AND FUTURE WORK

Our demonstration setup can be extended to other smart

home platforms operating in the 2.4GHz band. This is possible

as our CTC implementation is non-invasive (i.e., no hardware

modifications are required) and thus, provided that low-level

radio-features are accessible, existing smart home devices can

support CTC with a simple firmware update. Note that the

applicability of our solution is not limited to smart homes:

it can be used, for example, in the context of industrial

applications consisting of heterogeneous networks.

The smart home presented in Sec. VI relies on predefined,

mutually available commands and device addresses. A com-

mon application layer that is well-understood across all CTC-

enabled devices as well as a neighbour discovery service

are required to build generic and scalable solutions. To this

end, one can exploit recent efforts towards new connectivity

standards increasing compatibility among smart home prod-

ucts [34] and towards the development of cross-technology

neighbour discovery schemes [17]. We will investigate how to

incorporate these efforts in our solution in future work.

Finally, a real-world application requires security mecha-

nisms to provide authentication and encrypted communication.

Although encryption algorithms are available on the targeted

hardware platforms (e.g., as part of the ZigBee or BLE stack),

secure cross-technology key management and data exchange

is an open challenge. Along with efficient authentication

schemes tailored to the CTC context, e.g., [35], this is also

an interesting direction for future work.

VIII. RELATED WORK

CTC has recently attracted a lot of attention in the research

community, as a direct data exchange between devices with

incompatible PHYs allows the development of many attractive

services, including channel coordination [12], coordinated data

aggregation [36], sensor reconfiguration [11], as well as clock

synchronization across heterogeneous devices [37].

CTC is also promising to avoid the use of multi-radio

gateways, which may be especially beneficial in smart home

applications. Such a use case has been discussed theoreti-

cally [4], [9] and a few works have showcased a unidirectional

communication from smartphones to individual light bulbs [7],

[13]. In this work, instead, we let smartphones broadcast data

to multiple commercial smart home appliances simultaneously,

and allow a seamless control using a single app.

Existing work on CTC can be broadly classified into two

categories: packet-level modulation and PHY emulation. In the

latter, the payload of one technology is adjusted to embed a

legitimate frame of another. This approach allows to transmit

at high data rates from a high-end transmitter to a low-end

receiver (e.g., Wi-Fi → ZigBee [8] or BLE → ZigBee [7]), but

is asymmetric (i.e., it only works in one direction) and highly

technology-specific. Recent studies have focused on enabling a

data exchange also in the reverse direction: for example, [13],

[20] allow the transmission of ACK frames. XBee [9] and

LEGO-Fi [19] enable high-throughput communication from

low-end to high-end devices using cross-decoding and de-

mapping, but require hardware modifications.

Earlier CTC approaches are based on packet-level mod-

ulation (i.e., on the manipulation of packet-level properties

such as transmission power [38], packet length [3], [6], or

timing intervals [4], [21]) and are less technology-specific

than PHY emulation. Moreover, they are also more suitable

for bidirectional communication: for example, DCTC [21]

and FreeBee [4] support ZigBee ↔ Wi-Fi data exchange,

whereas [5] showcased ZigBee ↔ BLE communication. In

contrast to PHY emulation, however, the achievable through-

put is lower due to the limited granularity of packet-level

properties and RSS sampling rates, with achievable data rates

ranging from a few bps [4] to several kbps [5].

Although several CTC solutions exploiting packet-level

modulation have been proposed, none of them allows a fully-

bidirectional exchange across BLE, ZigBee and Wi-Fi devices.

In this work, we create a platform-independent primitive en-

abling an all-to-all cross-technology broadcast communication

on off-the-shelf BLE, ZigBee, and Wi-Fi devices. We have

described a preliminary prototype of this primitive in a demo

abstract [39]: in this paper, we fully describe its design and

apply it in a real-world IoT scenario.

IX. CONCLUSIONS

In this paper, we have showcased a prototypic gateway-free

smart home in which heterogeneous smart devices can directly

interact with each other and be simultaneously controlled from

a smartphone using a single app. To this end, we have first

enriched the X-Burst framework with the ability to perform

cross-technology broadcast transmissions across off-the-shelf

BLE, ZigBee, and Wi-Fi devices. We have then designed and

implemented concepts to extend existing smart home devices

with full-grown ZigBee and BLE stacks with CTC functional-

ity without affecting their normal operations. An experimental

evaluation shows the performance of our solution, including

its robustness, energy overhead, and achievable data rate.
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